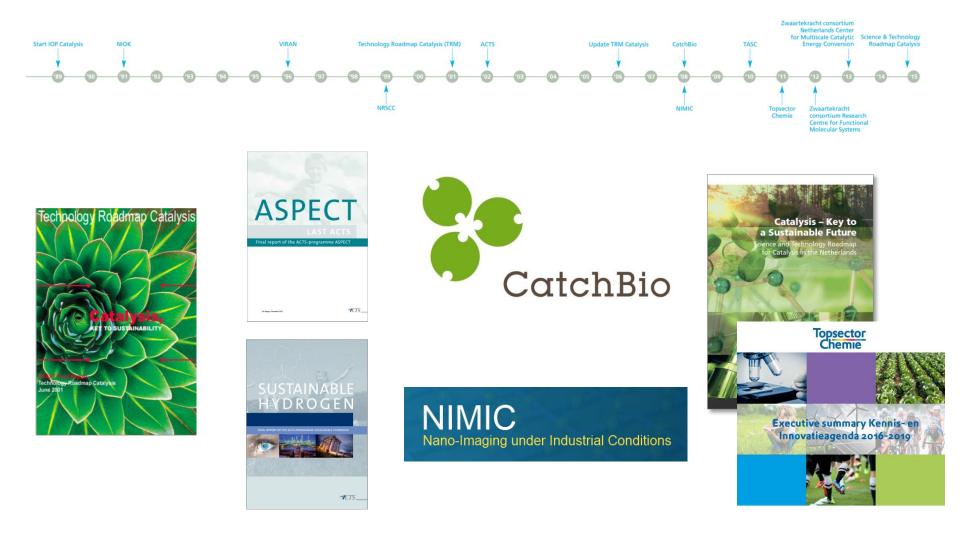
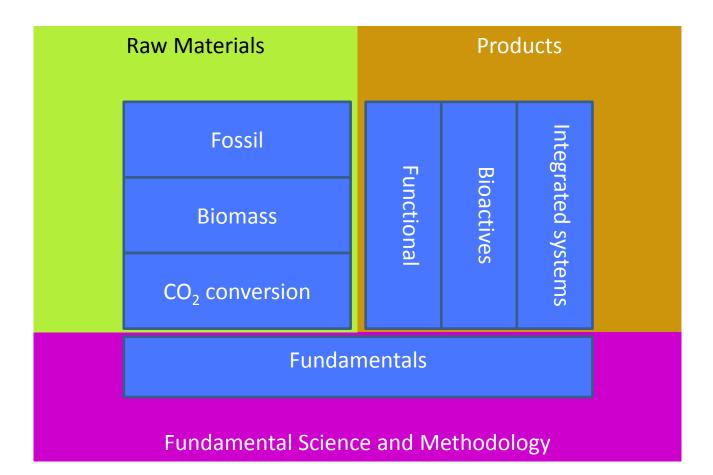


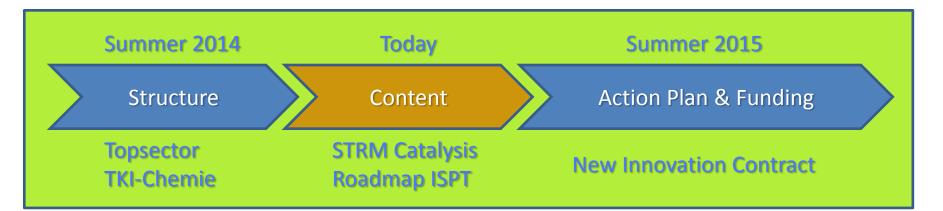
Ministerie van Economische Zaken


Roadmaps, an update

NCCC 2016



Historic background


Structure of the 2015 Catalysis Roadmap

The next steps

- Implement roadmap in new TKI-Chemistry
- Integrate with Process Technology
- Translate into three-staged action plan and new science agenda
 - Now-2020
 - 2020-2030
 - 2030-2040

Knowledge and Innovation Agenda

Executive Summary Roadmap "Chemistry of Advanced Materials"

	Short Term Now - 2020	Medium Term 2020 - 2030	Long Term 2030 - 2040	Program Line Ambition
Materials with Added Functionality	Improved performance of existing materials. Development self-healing polymers and ceramics. Mechanistic insight for functional polymers, nanocomposites, metals, high tech materials.	Higher strength polymers industrially produced Rational material design capabilities Knowledge base for start-ups future materi- als, e.g. biomedical and self-healing.	Reinforced composites and multi-functional matrials successful in market. High tech materials proven in prototypes for automotive and home. Biomedical materials in clinical trials.	NL will have settled its name as "rational material design" technology provider for high value-added functional materials and clean energy materials.
Thin Films and Coatings	New corrosion protection technologies for auto- motive, construction and Hi-Tech. Coatings with anti- microbial properties. Sensoring response coatings Self-healing technologies for thin films and membranes.	First responsive and active coatings industrially produced. Development of nanolayer production technologies. Growth of start-up companies in areas like specialty coatings, ion/ molecule sensing and air/ water purification.	Bio-Interactive coatings industrially produced. Implementation of nanolayer production technologies. New energy creation concepts developed to prototypes.	NL will be a world leader in thin film technology and provide high value-added functional coatings, protec- tive coatings and membranes combining sensory functions with separation technology.
Materials for Sustainability	Predict and design circular material streams, start-ups. Improved control molecular architecture of polymerisations with lower energy input. Design of novel materials for energy harvesting and storage.	New technologies for material replacement, reduction, reclaim and reuse. Dedicated polymer additives for biobased polymers.	Implement energy production and storage solutions in industrial commercial context. Multifunctional (bio) catalysts for effective recycling. Use of green solvent	NL will be leading as technology provider for circular use of high value (functional) materials, bio-based materials, and sustainable energy materials.
Enabling Science/ Technology	Electrochemistry and research on energy storage (batteries) Basic research in emerging classes of advanced materials. Initiatives like NanoNextNL Large scale infrastructure	Modelling and compu- tational chemistry on different length scales. Material surface analysis and characterization of thin lifms (microscopy, spectroscopy, scattering, ellipsometry).	Integration of multiple length scales. Understanding of how functional properties on the nanoscale translate to functionalities on larger length scales, leading to implementation in new products.	

- Artificial materials are the cornerstone of our global society. Progress in the field of materials chemistry has enabled numerous new technologies and applications ever since the Stone Age, and will continue to do so in the coming decades.
- The Netherlands has a very strong position in various fields of advanced materials, and has a high ambition level for extending on this position;
- in the period 2030-2040, The Netherlands will have settled its name globally as "rational material design" technology provider for high value-added materials and clean energy materials

Executive Summary Roadmap "Chemistry of Life"

	Short term Now-2020	Mid term 2020-2030	Long term 2030-2040	Programme Line Ambition
Molecular entities, devices and approaches for understanding, monitoring and improving personalized health	Personalized panomic analysis Multidisciplinary multi-center of Drug Discovery Understanding material properties contributing to improved compatibility in human cells.	Target identification for fmultifactorial diseases Structural information on the interaction of NCEs and bio-conjugates with target proteins Explore new functionali- ties of materials in human bodies i.e.g. stability, release, mechanical strength, lubrication, antimicrobial).	Development of novel clinically affordable disease-oriented workflows and devices Development of NCEs and bio-conjugates for use in diagnostics, in vivo imaging, and clinical applications Piloting and commer- cialization of new materials and devices	Improved and more alfordable personalized health
Molecular entities, technologies and approaches for under- standing, monitoring and improving food (security)	Molecular understand- ing of factors impacting texture/taste Validated biomarkers of health and disease in order to come from descriptive models to predictive models Identification of new, sustainable sources for protein supply	Novel enzymes/microbes that tailor texture/taste both in situ and ex-situ Quantitative and mechanistic models of in vitro and in vivo digestion of loods based on biochemical properties of food constituents Novel biochemical processes for obtaining ingredients with reduced environmental footprint	New, biochemically derived health promoting substances, including enzymes and micro- organisms Correlation of in vitro and in vivo models Novel ingredients to replace current, undesired food additives that are used to reduce spoilage	Improved and more sustalnable food
Enabling technologies and approaches for funda- mental understanding, monkoring and improving nolecular entities in the Chemistry of Life	 Insight in the impact of the heterogeneity of proteins and protein complexes on cellular networks Multidisciplinary center of Synthetic biology Long term Public Private Partnership Programme on Building Blocks of Life 	 Influence of heterogeneity in the dynamics of bio molecular networks and on the robustness of systems Minimal cells that conduct specific bio- chemical reactions in a robust manner and that can be used in industrial applications related to bioenergy, biomaterials, chemical production 	Utilize the knowledge on network dynamics and cellular heterogeneity to tackle main societal challenges Synthetic cell that in a controlled manner carries out basic biochemical reactions and that can replicate "Organ-on-a-Chip" modules that can be used as a disease specific screening platform	Accurate cell systems for medical and energy applications

- Understanding of Life on a molecular level (Chemistry of Life) provides a key that unlocks unlimited opportunities for breakthrough innovations, needed to address our global challenges for people today, and generations to come.
- The unifying aim in Chemistry of Life is therefore to bring about the chemical means and molecular understanding leading to an improved (precise), more and more personalized healthcare as well as more sustainable and healthy food for the benefit of mankind.

Executive Summary Roadmap "Chemical Nanotechnology & Devices"

	Short Term Now - 2020	Medium Term 2021 - 2030	Long Term 2031 - 2040
Well-being 3.1.1 Bio-active sensing and actuation devices	In the lab Avoid adverse reactions Single analytediagnostics	On the body / near the person Bio-mimetic devices Panel of analytes Early diagnostics / monitoring	In the body Bio-controlling devices Comprehensive biochemical profile Precision medicine Closed-loop monitoring and treatmen
3.1.2 Human model systems on a chip	Biornembrane on chip Organ(elle) on chip (liver, heart, lung, etc.) Cell on chip Multicellular system on chip	Organ functionality on a chip Combination of organs Interacting organs mimic complex	Body function High throughput screening technology
3.1.3 Microfluidic devices for synthesis and formula- tions in medicine and food	 Existing active ingredients and targeting formulations and encapsulates 	 New active ingredients and formulations concepts Biologics by cascade reactions 	 Integrated and flexible production of formulated drugs -custom-made rational-designed nanomedicines
Cradle to Cradle 3.2.1 Resource Efficiency and closed value added chains (gate-to-gate) material and energy flows	High efficient and sustainable (bio) catalyst ernbedded in flow-reactors.	Proof of concept for low energy, resource efficient and waste less chemical flow process, including up-stream and downstream processing, towards final product	Operational "Factory of the Future" on basis efficient use of energy and resources, without waste-streams lacking economic value
3.2.2 Time To market, speed-up of the process development	Novel multi-model analytical technologies with ultimate chemical resolution, at lowest possible length and different time scales	Availability of innovative micro- flow reactor technologies for gas-, liquid- and solid-phase chemistry. Advances in molecular, process modelling and statistics	Implementation of the "factory of the Future" on basis of "flow chemistry" in variety of chemical production processes
3.2.3 Process Reliability & Unification	Novel multi-model analytical technologies (integration of micro- and spectroscopic tools) for product characterization	Implementation of advanced computational methodologies for process modelling and advanced chemometrics supporting.	Reliable industrial production (implementation of PAT approach) of a large variety of smart and complex chemicals, materials, on basis of flow chemistry (3D printing), e.g. chemical modified (personalized) biopharma- ceuticals, food application
Energy 3.3.1 Electro-chemical reduction of CO ₂ with minimum over-potential	New technology for efficient electrochemical catalysis	Solar catalysis (water splitting)	Energy production and storage at point of use
3.3.2 Towards a third generation solar cell	Development of new nano- materials for solar cells	 Scalable synthesis routes Scaling up of material production Integrated in the material development process 	Solar cell device development and optimization

- The roadmap "Chemical Nanotechnologies & Devices" refers to technologies and devices able to mimic, measure and sense (bio) chemical processes and is as such of crucial importance for the majority of the top sectors (Water, Life Sciences and Health, Agriculture & Food, Energy), and the top sector Chemistry in particular.
- From a technological point of view and envisioning a society in 2040, having free access to "personalized diagnostic sensors", the "factory of the future" and " sunlight as primary energy source", extensive technological breakthroughs in chemical, spatial (sub nm length scales) and temporal resolution are regarded vital.

Programmaraad

Chemical Conversion, Process Technology & Synthesis

- Prof. Dr. Eelco Vogt (Albemarle/UU), voorzitter
- Prof. Dr. Ir. Hans Kuipers (TU/e), vice-voorzitter
- Programmamanager: Dr. Arlette Werner
- Dr. Rinus Broxterman (DSM)
- Dr. Piet Huizenga (Shell)
- Ir. Peter Jansen (Corbion)
- Dr. Ed de Jong (Avantium)
- Dr. Sigrid Bollwerk (ECN)
- Dr. Robert Terörde (BASF)
- Dr. Dirk Verdoes (TNO)
- Dr. Ton Vries (Syncom)

- Prof. Dr. Gerrit Eggink (WUR)
- Prof. Dr. Syuzanna Harutyunyan (RUG)
- Prof. Dr. Emiel Hensen (TU/e)
- Prof. Dr. Bert Klein Gebbink (UU)
- Prof. Dr. Mark van Loosdrecht (TUD)
- Prof. Dr. Floris Rutjes (RUN)

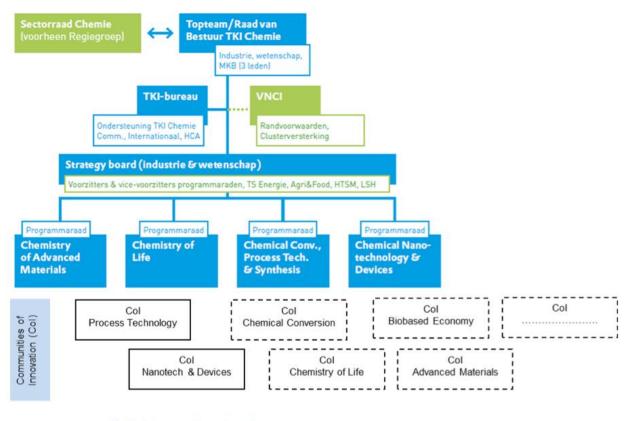
Executive Summary Roadmap

"Chemical Conversion, Process Technology & Synthesis"

	Short term Now-2020	Mid term 2020-2030	Long term 2030-2040	Programme Line Ambition
Making Molecules Efficiently	 Improved efficiency of current chemical processes Novel C1 chemical processes 	Increasing use of renewable electricity in the chemical industry Transition to biomass as source for chemicals	Transition to solar as main energy resource Biomass and CO ₂ as main carbon source	Transition to a low- carbon economy
Making Molecules From Biomass	Thermo-Chemical conversion of biomass Demo-scale biorefinery based on 2nd generation sugars	Process Intensification Novel carbon efficient processes and products Industrial biotechnologi- cal conversions	Full scale biorefinery Efficient purification/ separation routes for products of bio-origin	Discovering new routes for making chemicals ir a truly sustainable way
Making Functional Molecules	Catalyst design tools to control properties of polymeric materials. Evolution of sustainable synthetic methodologies and catalysts. Mechanistic advances in the synthesis of complex functional molecules.	Low-cost, catalytic alternatives for radical polymerizations Rational synthesis design for complex functional molecules Improved process technology solutions	Sustainable manufactur- ing of polymeric mate- rials based on designer catalysts Sustainable manufactur- ing of any funtional mole- cule with 100% efficiency	Reducing the ecologica footprint of production, introducing novel chemical products with advanced properties and functionality
Enabling Science/Technology	New spectroscopic tools/ modeling methods to study reactions at molecular level Integrated catalysis/ reactor technology design approaches	Process intensification Electrochemistry and electrocatalysis	 Rational design for chemical processes for energy conversion, storage and molecule and materials synthesis 	Complete control over chemical process design and operation from atomic to reactor scale

Overall Ambition:

To make the transition from our fossil resource dependent economy to a circular low-carbon economy that relies on sustainable and abundant resources.


- The anticipated transition involves a three-pronged approach.
- Step improvements in the efficiency of current chemical processes are needed to decrease energy and raw material consumption.
- In the short term, new sustainable resources such as biomass for the manufacture of chemical products will require new combinations of designer catalysis and advanced process technology, in fields such as C₁-chemistry, waste recycling, and novel processes for the separation, purification and conversion of biomass.
- Integration of renewable energy in the form of electricity is a medium term challenge to enable the desired long-term transition to a circular economy in which materials and CO₂ recycle are key elements.
- Synthesis routes for complex functional molecules need to be developed that allow sustainable production of any functional chemical product in a minimum of process steps and with 100% efficiency.

How to reach these ambitions?

- The Innovation Fund Chemistry (the former Fund New Chemical Innovations) intends to promote cooperation and transfer of knowledge between universities and companies.
- The Innovation Fund Chemistry welcomes new initiatives that fit within the roadmaps of the Topsector Chemistry. Verification of the fit ("passendheidstoets") is carried out by the TKI Chemistry.
- ARC CBBC
 - (Next slides)

- Funding tools Innovation Fund
- **KIEM** (Knowledge Innovation Mapping): short-term initiatives in which SMEs together with universities and/or HBO-institutions can tackle a practical research question.
- **LIFT** (Launchpad for Innovative Future Technology): initiatives of at least one company and at least one knowledge institute in which the research question of the company is conducted and financed in two phases.
- **TA** (Technology Area): initiatives of consortia of at least two companies and at least two knowledge institutes in which the research questions of the participating companies are addressed coherently.
- **CHIPP** (Chemical Industrial Partnership Programme): initiatives of at least one company and at least two knowledge institutes focused strongly on research questions of the company.

TKI-Chemistry

— = Col-status reeds verleend

---- = Potentieel Col

Chemical Building Blocks Consortium

• Press release December 7:

AkzoNobel, BASF, Shell, the Ministry of Economic Affairs, Top Sector Chemistry, the Netherlands Organisation for Scientific Research (NWO) and Utrecht University, the Eindhoven University of Technology and Groningen University today presented their plans for setting up the new Advanced Research Center Chemical Building Blocks Consortium (ARC CBBC).

This national research centre will tackle important energy and chemistry issues associated with the growing depletion of the finite supply of raw materials.

The partners have made a commitment for several years and are aiming to jointly invest EUR 11 million a year, or 80 - 100 jobs in the knowledge industry. "This will also reinforce our competitive position," Economic Affairs Minister Henk Kamp points out. "It will promote economic growth and generate new jobs."

ARC-CBBC: founding fathers

Three Companies

Three Universities

rijksuniversiteit groningen

Universiteit Utrecht

AkzoNobel

Shell

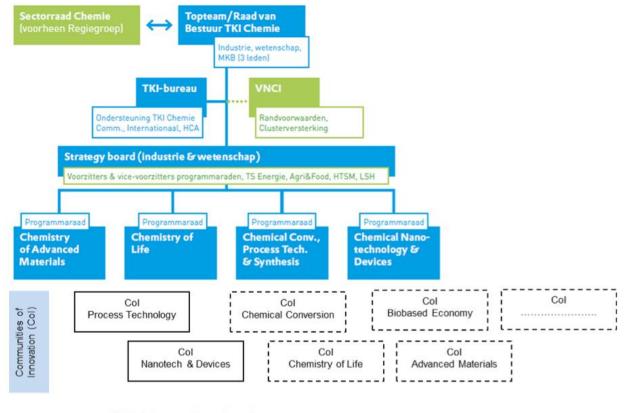
We create chemistry

TUe Technische Universiteit Eindhoven University of Technology

Two parts

- Proprietary Program
- Only accessible for the founding companies
- Bilateral programs, not limited to founding universities
- Fundamental Research and Valorization

- Open program
- Ticketing system
- Multi party programs
 - Open to other companies
 - Open to other universities
- Fundamental research


ARC-CBBC

- Ambition:
 - 10 year program at 10 million Euro per year level
 - This is mostly new money
 - Focal points in line with Roadmap CCPT&S
 - E.g., electrification, C₁-C₂-chemistry
 - Homogeneous, Heterogeneous Catalysis, Process Technology Advanced materials
- Next steps
 - Finalization of Consortium Agreement
 - Founding meeting end of this week
 - Symposium Early May (most likely May 10)

Communities of Innovation

- Within the Topsector Chemistry, Communities of Innovation (Col's) unite and represent companies and knowledge institutes in a specific chemical discipline to stimulate local focus and excellence.
- A Col initiates public-private research initiatives in the discipline. The Col's target the creation of synergy and symbiosis within a discipline.
- At this point in time, the Topsector Chemistry recognizes two Col's (Process Technology and Nanotech & Devices)

Col's: Communities of Innovation

— = Col-status reeds verleend

---- = Potentieel Col